le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
gcd2(0, y) -> y
gcd2(s1(x), 0) -> s1(x)
gcd2(s1(x), s1(y)) -> if_gcd3(le2(y, x), s1(x), s1(y))
if_gcd3(true, s1(x), s1(y)) -> gcd2(minus2(x, y), s1(y))
if_gcd3(false, s1(x), s1(y)) -> gcd2(minus2(y, x), s1(x))
↳ QTRS
↳ DependencyPairsProof
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
gcd2(0, y) -> y
gcd2(s1(x), 0) -> s1(x)
gcd2(s1(x), s1(y)) -> if_gcd3(le2(y, x), s1(x), s1(y))
if_gcd3(true, s1(x), s1(y)) -> gcd2(minus2(x, y), s1(y))
if_gcd3(false, s1(x), s1(y)) -> gcd2(minus2(y, x), s1(x))
IF_GCD3(false, s1(x), s1(y)) -> GCD2(minus2(y, x), s1(x))
MINUS2(s1(x), y) -> IF_MINUS3(le2(s1(x), y), s1(x), y)
IF_GCD3(true, s1(x), s1(y)) -> MINUS2(x, y)
MINUS2(s1(x), y) -> LE2(s1(x), y)
LE2(s1(x), s1(y)) -> LE2(x, y)
GCD2(s1(x), s1(y)) -> LE2(y, x)
IF_GCD3(true, s1(x), s1(y)) -> GCD2(minus2(x, y), s1(y))
GCD2(s1(x), s1(y)) -> IF_GCD3(le2(y, x), s1(x), s1(y))
IF_MINUS3(false, s1(x), y) -> MINUS2(x, y)
IF_GCD3(false, s1(x), s1(y)) -> MINUS2(y, x)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
gcd2(0, y) -> y
gcd2(s1(x), 0) -> s1(x)
gcd2(s1(x), s1(y)) -> if_gcd3(le2(y, x), s1(x), s1(y))
if_gcd3(true, s1(x), s1(y)) -> gcd2(minus2(x, y), s1(y))
if_gcd3(false, s1(x), s1(y)) -> gcd2(minus2(y, x), s1(x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
IF_GCD3(false, s1(x), s1(y)) -> GCD2(minus2(y, x), s1(x))
MINUS2(s1(x), y) -> IF_MINUS3(le2(s1(x), y), s1(x), y)
IF_GCD3(true, s1(x), s1(y)) -> MINUS2(x, y)
MINUS2(s1(x), y) -> LE2(s1(x), y)
LE2(s1(x), s1(y)) -> LE2(x, y)
GCD2(s1(x), s1(y)) -> LE2(y, x)
IF_GCD3(true, s1(x), s1(y)) -> GCD2(minus2(x, y), s1(y))
GCD2(s1(x), s1(y)) -> IF_GCD3(le2(y, x), s1(x), s1(y))
IF_MINUS3(false, s1(x), y) -> MINUS2(x, y)
IF_GCD3(false, s1(x), s1(y)) -> MINUS2(y, x)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
gcd2(0, y) -> y
gcd2(s1(x), 0) -> s1(x)
gcd2(s1(x), s1(y)) -> if_gcd3(le2(y, x), s1(x), s1(y))
if_gcd3(true, s1(x), s1(y)) -> gcd2(minus2(x, y), s1(y))
if_gcd3(false, s1(x), s1(y)) -> gcd2(minus2(y, x), s1(x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
LE2(s1(x), s1(y)) -> LE2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
gcd2(0, y) -> y
gcd2(s1(x), 0) -> s1(x)
gcd2(s1(x), s1(y)) -> if_gcd3(le2(y, x), s1(x), s1(y))
if_gcd3(true, s1(x), s1(y)) -> gcd2(minus2(x, y), s1(y))
if_gcd3(false, s1(x), s1(y)) -> gcd2(minus2(y, x), s1(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LE2(s1(x), s1(y)) -> LE2(x, y)
POL(LE2(x1, x2)) = 2·x1·x2
POL(s1(x1)) = 2 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
gcd2(0, y) -> y
gcd2(s1(x), 0) -> s1(x)
gcd2(s1(x), s1(y)) -> if_gcd3(le2(y, x), s1(x), s1(y))
if_gcd3(true, s1(x), s1(y)) -> gcd2(minus2(x, y), s1(y))
if_gcd3(false, s1(x), s1(y)) -> gcd2(minus2(y, x), s1(x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
MINUS2(s1(x), y) -> IF_MINUS3(le2(s1(x), y), s1(x), y)
IF_MINUS3(false, s1(x), y) -> MINUS2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
gcd2(0, y) -> y
gcd2(s1(x), 0) -> s1(x)
gcd2(s1(x), s1(y)) -> if_gcd3(le2(y, x), s1(x), s1(y))
if_gcd3(true, s1(x), s1(y)) -> gcd2(minus2(x, y), s1(y))
if_gcd3(false, s1(x), s1(y)) -> gcd2(minus2(y, x), s1(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS2(s1(x), y) -> IF_MINUS3(le2(s1(x), y), s1(x), y)
Used ordering: Polynomial interpretation [21]:
IF_MINUS3(false, s1(x), y) -> MINUS2(x, y)
POL(0) = 0
POL(IF_MINUS3(x1, x2, x3)) = 1 + x2
POL(MINUS2(x1, x2)) = 2 + x1
POL(false) = 0
POL(le2(x1, x2)) = 0
POL(s1(x1)) = 1 + x1
POL(true) = 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
IF_MINUS3(false, s1(x), y) -> MINUS2(x, y)
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
gcd2(0, y) -> y
gcd2(s1(x), 0) -> s1(x)
gcd2(s1(x), s1(y)) -> if_gcd3(le2(y, x), s1(x), s1(y))
if_gcd3(true, s1(x), s1(y)) -> gcd2(minus2(x, y), s1(y))
if_gcd3(false, s1(x), s1(y)) -> gcd2(minus2(y, x), s1(x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
IF_GCD3(false, s1(x), s1(y)) -> GCD2(minus2(y, x), s1(x))
IF_GCD3(true, s1(x), s1(y)) -> GCD2(minus2(x, y), s1(y))
GCD2(s1(x), s1(y)) -> IF_GCD3(le2(y, x), s1(x), s1(y))
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
gcd2(0, y) -> y
gcd2(s1(x), 0) -> s1(x)
gcd2(s1(x), s1(y)) -> if_gcd3(le2(y, x), s1(x), s1(y))
if_gcd3(true, s1(x), s1(y)) -> gcd2(minus2(x, y), s1(y))
if_gcd3(false, s1(x), s1(y)) -> gcd2(minus2(y, x), s1(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
IF_GCD3(false, s1(x), s1(y)) -> GCD2(minus2(y, x), s1(x))
IF_GCD3(true, s1(x), s1(y)) -> GCD2(minus2(x, y), s1(y))
Used ordering: Polynomial interpretation [21]:
GCD2(s1(x), s1(y)) -> IF_GCD3(le2(y, x), s1(x), s1(y))
POL(0) = 0
POL(GCD2(x1, x2)) = 1 + 2·x1 + 3·x1·x2
POL(IF_GCD3(x1, x2, x3)) = x1·x2 + x1·x2·x3 + 2·x2 + x2·x3 + x3
POL(false) = 1
POL(if_minus3(x1, x2, x3)) = x1·x2
POL(le2(x1, x2)) = 1
POL(minus2(x1, x2)) = x1
POL(s1(x1)) = 1 + 3·x1 + 3·x12
POL(true) = 0
if_minus3(true, s1(x), y) -> 0
le2(s1(x), s1(y)) -> le2(x, y)
le2(0, y) -> true
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
minus2(0, y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
le2(s1(x), 0) -> false
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
GCD2(s1(x), s1(y)) -> IF_GCD3(le2(y, x), s1(x), s1(y))
le2(0, y) -> true
le2(s1(x), 0) -> false
le2(s1(x), s1(y)) -> le2(x, y)
minus2(0, y) -> 0
minus2(s1(x), y) -> if_minus3(le2(s1(x), y), s1(x), y)
if_minus3(true, s1(x), y) -> 0
if_minus3(false, s1(x), y) -> s1(minus2(x, y))
gcd2(0, y) -> y
gcd2(s1(x), 0) -> s1(x)
gcd2(s1(x), s1(y)) -> if_gcd3(le2(y, x), s1(x), s1(y))
if_gcd3(true, s1(x), s1(y)) -> gcd2(minus2(x, y), s1(y))
if_gcd3(false, s1(x), s1(y)) -> gcd2(minus2(y, x), s1(x))